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ABSTRACT2

Choroid neovascularization (CNV) is one of blinding ophthalmologic diseases. It is mainly3
caused by new blood vessels growing in choroid and penetrating the Bruch’s membrane. Accurate4
segmentation of CNV is essential for ophthalmologists to analyze the patient’s condition and5
specify treatment plan. Although many deep learning based methods have achieved promising6
results in many medical image segmentation tasks, CNV segmentation in retinal OCT images is7
still very challenging as the blur boundary of CNV, large morphological differences, speckle noise8
and other similar diseases interference. In addition, the lack of pixel-level annotation data is also9
one of factors that affect the further improvement of CNV segmentation accuracy. To improve the10
accuracy of CNV segmentation, a novel multi-scale information fusion network (MF-Net) based11
on U-Shape architecture is proposed for CNV segmentation in retinal OCT images. A novel12
multi-scale adaptive-aware deformation module (MAD) is designed and inserted into the top of13
encoder path, aiming at guiding the model to focus on multi-scale deformation of the targets and14
aggregates the contextual information. Meanwhile, to improve the network’s ability to learn to15
supplement low-level local high resolution semantic information to high-level feature maps, a16
novel semantics-details aggregation module (SDA) between encoder and decoder is proposed. In17
addition, to leverage unlabeled data to further improve the CNV segmentation, a semi-supervised18
version of MF-Net is designed based on pseudo label data augmentation strategy, which can19
leverage unlabeled data to further improve CNV segmentation accuracy. Finally, comprehensive20
experiments are conducted to validate the performance of the proposed MF-Net and SemiMF-Net.21
The experiment results show that both proposed MF-Net and SemiMF-Net outperforms other22
state-of-the-art algorithms.23
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INTRODUCTION
Choroidal neovascularization (CNV), also known as subretinal neovascularization, is a basic pathological25
change of various intraocular diseases such as age-related macular degeneration, central exudative cho-26
rioretinopathy, idiopathic choroidal neovascularization, pathological myopic macular degeneration and27
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28 ocular histoplasmosis syndrome (DeWan et al. (2006); Jia et al. (2014); Abdelmoula et al. (2013); Liu et al. 
29 (2015); Zhu et al. (2017)). It often involves the macula, causing serious damage to the central vision. In 
30 the early stage of CNV, there are usually no abnormal symptoms. Along with the gradually expansion of 
31 neovascular leakage and rupture, it may cause vision loss, visual distortion, or central scotoma (Freund et al. 
32 (1993); Grossniklaus and Green (2004)). CNV can persist for months or years and then gradually become 
33 steady (Zhu et al. (2017)). The patients’ macula with recurrent symptoms are seriously damaged, which 
34 may cause permanent visual impairment. Optical coherence tomography (OCT) is a non-invasive imaging 
35 technology proposed by Huang et al. (1991), which can capture high resolution cross-sectional retinal 
36 structure. It plays an important role in the diagnosis and monitoring of retinal diseases (Shi et al. (2014); 
37 Chen et al. (2015); Wang et al. (2021a)). In addition, fluorescence angiography (FA) and indocyanine green 
38 angiography (ICGA) are also important diagnostic imaging modalities for the detection retinal diseases in 
39 clinical practice, and there are many works to analyze CNV based on FA and ICGA (Gao et al. (2016); 
40 Talisa et al. (2015); Corvi et al. (2020)). However, FA and ICGA can only capture one 2D fundus image, 
41 which may cause the loss of internal structure information of CNV (Zhang et al. (2019)). Besides, FA and 
42 ICGA are invasive and may cause nausea and other allergic reactions due to intravenous injection of dye 
43 (Jia et al. (2014)). Instead, OCT is non-invasive and can obtain high-resolution cross-sectional images of 
44 the retina with a high speed (Talisa et al. (2015); Corvi et al. (2020)). Therefore, accurate segmentation 
45 of CNV in OCT images is essential for ophthalmologists to analyze the patient’s condition and specify 
46 treatment plan. There are also previous works have been proposed for CNV segmentation in retinal OCT 
47 images (Zhang et al. (2019); Xi et al. (2019)). Zhang et al. (2019) designed a multi-scale parallel branch 
48 CNN to improve the performance of CNV segmentation in OCT images. Xi et al. (2019) proposed an 
49 automated segmentation method for CNV in OCT images using multi-scale CNN with structure prior, in 
50 which a structure learning method was innovatively proposed based on sparse representation classifica-
51 tion and the local potential function to capture the global spatial structure and local similarity structure 
52 prior. However, CNV segmentation in retinal OCT images is still very challenging as the complicated 
53 pathological characteristics of CNV, such as blur boundary, large morphological differences, speckle 
54 noise and other similar diseases interference. Multi-scale global pyramid feature aggregation module and 
55 multi-scale  adaptive-aware deformation module are proposed to segment corneal ulcer in slit-lamp image 
56 in our previous work (Wang et al. (2021b)). Therefore, to tackle these challenges and improve the CNV 
57 segmentation accuracy, a novel multi-scale information fusion network (MF-Net) is proposed for CNV 
58 segmentation in retinal OCT images. Our mainly contributions are summarized as follows,

59 1) A multi-scale adaptive-aware deformation module (MAD) is used and inserted at the top of encoder
60 path to guide the model to focus on multi-scale deformation of the targets and aggregate the contextual 
61 information.

62 2) To improve the network’s ability to learn to supplement low-level local high resolution semantic
63 information to high-level feature maps, a novel semantics-details aggregation module (SDA) between 
64 encoder and decoder is designed.

65 3) Based on a U-shape architecture, a novel MF-Net integrated MAD module and SDA module is
66 proposed and applied for CNV segmentation tasks. In addition, to leverage unlabeled data to further 
67 improve the CNV segmentation accuracy, a semi-supervised version of MF-Net is proposed by combining 
68 pseudo data augmentation strategy named as SemiMF-Net.

69 4) Extensive experiments are conducted to evaluate the effectiveness of the proposed method. The 
70 experimental results show that, compared to state-of-the-art CNN-based methods, the proposed MF-Net 
71 achieves higher segmentation accuracy.
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RELATED WORK
72 Recently, deep learning based method has been proposed for image segmentation and achieved remarkable 
73 results. Long et al. (2015) proposed a fully convolutional networks (FCN) for semantic segmentation, 
74 which removed the full connection layer and could adapt to any input size. Although FCN has achieved 
75 satisfactory performance in semantic segmentation, the capacity of FCN to capture contextual information 
76 still needs to be improved as the limitation of convolutional layers. To tackle these problems, there are 
77 many methods that use pyramid based modules or global pooling to aggregate regional or global contextual 
78 information (Zhao et al. (2017); Chen et al. (2017)). Zhao et al. (2017) proposed a pyramid scene parsing 
79 network (PSPNet) based on pyramid pool modules, which aggregated context information from different 
80 regions to learn global context information. Chen et al. (2017) further proposed DeepLab v3 for semantic 
81 segmentation by introducing atrous convolution and atrous spatial pyramid pooling (ASPP). In addition, 
82 many attention mechanism based methods have been explored to aggregate heterogeneous contextual 
83 information (Li et al. (2018); Oktay et al. (2018); Fu et al. (2019)). However, these methods are mainly 
84 applied to the segmentation tasks with obvious features. In addition, there are also many deep learning 
85 based methods have been proposed for medical image segmentation (Ronneberger et al. (2015); Gu et al. 
86 (2019); Feng et al. (2020)). Although these methods have achieved impressive results, their performance of 
87 CNV segmentation in OCT images with large morphological differences, speckle noise and other similar 
88 disease interference features has been reduced. Therefore, to improve the segmentation accuracy and tackle 
89 the challenges of CNV segmentation in retinal OCT images, a novel multi-scale information fusion network 
90 (MF-Net) is proposed for CNV segmentation in retinal OCT images.

METHOD
91 As shown in Fig. 1, the proposed encoder-decoder structure based multi-scale information fusion network 
92 (MF-Net) consists of three parts: encoder-decoder network, multi-scale adaptive-aware deformation module 
93 (MAD) and semantics-details aggregation module (SDA). Specifically, the encoder-decoder network is 
94 used as our backbone network. MAD is inserted at the top of the encoder to guide the model to focus on 
95 the multi-scale deformation maps and aggregate the contextual information, while SDA is applied as a 
96 variant of skip connection of the whole network to fuse multi-level semantic information.
97 Backbone
98 Recently, the encoder-decoder structure is proved to be an efficient architecture for pixel-wised semantic

segmentation. Most of the state-of-the-art segmentation networks are based on encoder-decoder structures,99
including AttUNet (Oktay et al. (2018)), CE-Net (Gu et al. (2019)) and PSPNet (Zhao et al. (2017)) that100
have achieved remarkable performances in medical image segmentation. The encoder-path is mainly used101
to extract rich semantic information and global features from the input image, and down-sample the feature102
maps layer by layer, while the decoder-path aims to up-sample the feature maps with strong semantic103
information from higher level stage, and restore the spatial resolution layer by layer.104

To maximize the use of the information provided by the original image, the same encoder-decoder path is105
used as our backbone network. Unlike CE-Net, which send the output of the encoder-path to dense atrous106
convolution (DAC) followed by residual multi-kernel pooling (RMP), the output is directly sent to the107
decoder-path. In addition, the skip-connection between the same level of encoder and decoder in CE-Net is108
also deleted in our backbone network.109
Multi-scale Adaptive-aware Deformation Module (MAD)110

It has been demonstrated that the multi-scale feature can improve the CNV segmentation accuracy in111
(Zhang et al. (2019)) and (Xi et al. (2019)). Therefore, to tackle the problems of large morphological112
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Figure 1. Architecture of the proposed MF-Net.

Figure 2. Architecture of the proposed multi-scale adaptive-aware deformation module (MAD).

113 differences of CNV in retinal OCT images, a MAD module is embedded at the top of the encoder-path to 
114 guide the model to focus on multi-scale deformation of the targets and aggregate the contextual information. 
115 As can be seen from Fig.2 that the MAD module contains 4 parts: parallel and deformable convolution 
116 module, multiple global spatial attention module, multiple global channel attention module and adaptive 
117 residual module as shown in Fig.2.
118 Parallel and Deformable Convolution Module
119 After features are encoded by Encoder 4 (E4), they are fed into parallel and deformable convolution 
120 module to augment the spatial sampling locations in the modules by additional offsets of kernel size in 
121 horizontal and vertical direction. As shown in Fig.2, the output of Encoder 4 (E4) is simultaneously fed
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into four 1×1 convolutional layers. Four dilation convolutions with rate 1, 3, 5, and 7 are respectively122
123 further used after the four parallel layers to squeeze the channel and to extract global context information 
124 from different levels of feature maps, and then the feature maps are concatenated and fed into a deformable 
125 convolution to compute B ∈ Rc×h×w. Finally, B ∈ Rc×h×w are fed into the parallel-linked multiple 126 
global spatial attention module, multiple global channel attention module and adaptive residual module, 127 
respectively. The parallel and deformable convolution module can be summarized as

B = Convdeformconcat
4
k=1

(
convdilation@2k−1

(
Ak
))

, (1)

128 where Ak ∈ Rc×h×w denotes the output of 1×1 convolutional layers in k-th parallel branch, and @2k−1
129 represents the convolution with dilation rate of 2k − 1.

130 Multiple Global Spatial Attention Module
131        Max-pooling and average pooling are commonly used operations in convolutional neural networks, 
132     since they can reduce the sizes of feature maps and keep significant spatial response information in each 
133  channel; nevertheless, noise may also be kept due to the different sizes and shapes of lesion. To reduce 
134   the influence of the irrelevant significant spatial response information in all channels, average pooling 
135  can be used to compute the mean value of all channels in the corresponding position in the input feature 
136    maps. Therefore, 2D average-pooling and max-pooling are performed simultaneously in our multiple 
137 global spatial attention module to get the most significant spatial response information in all channels and 
138 suppress noise interference. B are fed to the maximum map branch and the mean map branch in parallel 
139      to generate attention map S1 ∈ R1×h×w and S2 ∈ R1×h×w, respectively, and then are concatenated in 
140    channel dimension. Then, a convolutional operation is applied to squeeze the channel of concatenated 
141 maps. Finally, a sigmoid function is used to generate the final attention feature map S ∈ R1×h×w,

S = sigmoid
(
conv

(
concat

(
S1, S2

)))
. (2)

142 This module can get the response of each feature map in all channels and suppress noise interference.

143 Multiple Global Channel Attention Module
144  Two parallel branches with global pooling are also constructed. The feature maps B are fed into a global 
145 max pooling operation to obtain global channel maximum value maps C1 ∈ Rc×1×1, while B are also fed 
146 into a global average pooling operation to obtain global channel mean value maps C2 ∈ Rc×1×1. Then, C1 

147 and C2 are concatenated and fed into a convolution layer to smooth and squeeze the feature maps. Finally, 
148 the results are reshaped and fed into a fully connection layer followed by sigmoid function to obtain the 
149 final feature map C ∈ Rc×1×1,

C = sigmoid
(
FC

(
conv

(
concat

(
C1, C2

))))
. (3)

This module can get the response of each feature map in all channels and suppress noise interference.150

Adaptive Residual Module151

The output of parallel and deformable convolution module B ∈ Rc×h×w are multiplied by feature maps152
from multiple global spatial attention module S ∈ R1×h×w spatial-wisely and feature maps from multiple153
global channel attention module C ∈ Rc×1×1 channel-wisely, respectively. Then, pixel-wise addition154
operation followed by a convolutional layer is applied as155

O = B ⊕ conv
((
λB⊗spatial (S)

)
⊕ (γB⊗channel (C))

)
, (4)
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where ⊗spatial and ⊗channel denote spatial-wise and channel-wise multiple, respectively. O ∈ Rc×h×w156
represents the output of adaptive residual module. ⊕ represents pixel-wise addition. λ and γ are learnable157
parameters and are initialized as a non-zero value (1.0 in this paper). Finally, pixel-wise addition is158
used to add the original feature maps to the smoothed feature maps to get the final output of multi-scale159
adaptive-aware deformation module O ∈ Rc×h×w to the decoder-path.160
Semantics-details Aggregation Module (SDA)161

Skip-connection can fuse the strong semantic information of the decoder-path with the high-resolution162
feature of the encoder-path. It is a commonly used structure in encoder-decoder based network, and further163
promotes the applications of the encoder-decoder structure. However, directly sending the high-resolution164
features of the encoder to the decoder will introduce irrelevant clutters and result in incorrect segmentation.165
Therefore, a novel semantics-details aggregation module (SDA) have been proposed as a variant of skip-166
connection to enhance the information that is conducive to segmentation and suppress invalid information.167
As can be seen in Fig. 1, two SDA modules have been introduced between encoders and decoders. The168
structure of the proposed SDA module is shown in Fig. 3. In the SDA module, the skip-connection is

Figure 3. Architecture of the proposed Semantics-details Aggregation Module (SDA).

169
reconstructed by combining the feature map of encoder, decoder and upper-level decoder. For example, the170
left of Fig. 3 shows the structure of SDA 1. First, output feature maps of the Decoder 3 are upsampled171
followed by a 3×3 convolutional layers to squeeze the channel. Then, the obtained feature maps and the172
output of the Encoder 2 is multiplied pixel-wisely to filter the detailed information that is conducive to173
segmentation. Finally, the filtered feature maps and the output of the Decoder 2 are added pixel-wisely to174
fuse detailed information and high-level semantic information. Above all, each SDA module in different175
stages can be summarized as176

Sk = Conv
(
F k@2

)
⊗ E3−k ⊕D3−k, k = 1, 2, (5)

where Sk denotes the output of the k-th SDA module, @2 represents the upsampling operation with rate177
of 2. Ek and Dk denote the output feature maps of the k-th Encoder and Decoder. F 1 and F 2 represent178
the output feature maps of the Decoder 3 and SDA 1, respectively. Sk denotes the output of the k-th SDA179
module. It is worth noting that no skip connection is introduced after Encoder 3 and Encoder 4, because180
the detailed information may be gradually weakened when transmitted to the deeper layers, and also it can181
save computing resources.182
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183 Loss Function
184 Image segmentation tasks can be analogized to pixel-level classification problems. Therefore, the binary 
185 cross-entropy loss LBCE , commonly used in classification tasks, is adopted to guide the optimization of 
186 our proposed method. However, LBCE only be adopted to optimize segmentation performance in pixel 
187 level, ignoring the integrity of the image level. Therefore, to tackle this problem, the dice loss also be 
188 introduced to optimize our proposed method. The joint loss function as

LReal = LDice + LBCE , (6)
189

LDice = 1−
∑

h,w

2 |X × Y |
|X|+ |Y |

, (7)

190
LBCE = −

∑
h,w

(Y logX + (1− Y ) log (1−X)), (8)

where X and Y denote the segmentation results and the corresponding ground truth, h and w represent the191
coordinates of the pixel in X and Y .192

SemiMF-Net193

In medical image segmentation tasks, the lack of pixel-level annotation data has always been one of the194
important factors that hinder the further improvement of segmentation accuracy, and it is expensive and195
time-consuming to obtain these label data. Therefore, it has always been an urgent problem in the field of196
medical image segmentation to use unlabeled data combined with limited labeled data to further improve197
segmentation performance. To this end, based on the newly proposed MF-Net, a novel SemiMF-Net is198
further proposed by combining the pseudo label augmentation strategy to leverage unlabeled data to further199
improve the CNV segmentation accuracy, as shown in Fig.4. It can be seen from Fig.4 that our proposed

Figure 4. Architecture of the proposed SemiMF-Net.

200
semi-supervised framework of SemiMF-Net mainly consist of three steps: 1) Limited labeled data is201
adopted to pre-train MF-Net to segment unlabeled, and these segmentation results are employed as pseudo202
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Table 1. The details of data strategies.
Supervised Semi-Supervised

Training Retinal OCT images with
ground truth from three folds.

Retinal OCT images with
ground truth from three folds+2560

retinal OCT images with pseudo labels.

Testing Retinal OCT images with
ground truth from the remaining one fold.

Retinal OCT images with
ground truth from the remaining one fold.

labels for unlabeled data. 2) Unlabeled data with pseudo labels and labeled data are mixed to re-train203
the MF-Net based on the objective function LPseudo + βLReal in a semi-supervised way, where LPseudo204
and LReal are the joint loss function as Eq.(6), β is a weight paramter (1.0 in this paper). 3) Finally, the205
SemiMF-Net that can accurately segment CNV in retinal OCT images is obtained.206

EXPERIMENTS
Dataset207

In order to accurately segment CNV and evaluate the performance of the proposed method, experienced208
ophthalmologists annotate pixel-level ground truth for the 1522 OCT images with CNV collected from the209
UCSD public dataset Kermany et al. (2018), which collected by the Shiley Eye Institute of the University210
of California San Diego (UCSD) and all of the images (Spectralis OCT, Heidelberg Engineering, Germany)211
were selected from retrospective cohorts of adult patients without exclusion criteria based on age, gender,212
or race. In addition, to evaluate the performance of the proposed method and all comparison algorithms213
comprehensively and objectively, 4-fold cross-validation is performed in all experiments, in which each214
fold contained 380 OCT images except the 4-th fold have 382 OCT images. In addition, 2560 retinal OCT215
images from the remaining 35683 OCT images are randomly selected as unlabeled data to participate in216
SemiMF-Net training. The details for data strategies are listed in Table 1.217 Implementation Details218

Binary cross-entropy loss and Dice loss are jointly used as the loss function to train the proposed network.219
The implementation of our proposed MF-Net is based on the public platform Pytorch and NVIDIA Tesla220
K40 GPU with 12GB memory. Adam is used as the optimizer. Initial learning rate is set to 0.0005, and221
weight decay is set to 0.0001. The batch size is set as 4 and epoch is 50. To be fair, all experiments adopt222
the same data preprocessing and training strategy.223 Evaluation Metrics224

225 To comprehensively and fairly evaluate the segmentation performance of different methods, three 
226 indicators including Dice similarity coefficients (DSC), Sensitivity (SEN) and Jaccard similarity coefficient 
227 (JSC) are adopted to quantitatively analyze the experimental results, among which JSC and DSC are the 
228 most commonly used indices in validating the performance of segmentation algorithms[CE-Net, CPFNet, 
229 PSPNet, DeepLabV3]. In addition, the SEN is always adopted to evaluate the recall rate of abnormal 
230 conditions, which is essential for accurate screening of abnormal subjects and has been applied in many 
231 medical segmentation tasks[CE-Net, CPFNet, AttUNet]. The formulas of the three evaluation metrics are 
232 as follows

Dice =
2TP

FP + 2TP + FN
, (9)

233

SEN =
TP

TP + FN
, (10)
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Table 2. The result of comparison experiments and ablation studies (mean ± standard deviation).
Methods DSC SEN JSC Time(seconds)

UNet 92.38±0.31 92.44±0.97 85.92±0.53 0.1158
CE-Net 92.73±0.23 92.82±0.81 86.52±0.41 0.0921
CPFNet 92.77±0.22 92.96±0.52 86.58±0.38 0.1053
AttUNet 92.31±0.14 92.22±0.37 85.81±0.25 0.1289

DeepLabV3 92.73±0.19 92.75±0.25 86.55±0.35 0.1316
PSPNet 92.62±0.37 92.79±0.29 86.32±0.62 0.2237

Backbone 92.46±0.29 92.56±0.44 86.05±0.50 0.0789
Backbone+MAD 92.71±0.28 92.81±0.39 86.48±0.48 0.0842
Backbone+SDA 92.76±0.18 92.69±0.68 86.57±0.33 0.0711

MF-Net 92.90±0.21 93.01±0.50 86.80±0.37 0.0895
SemiMF-Net 93.07±0.18 93.26±0.45 87.07±0.31 0.0895

234

JSC =
TP

FP + TP + FN
, (11)

235 where TP represents the number of true positives, FP represents the number of false positives and FN 
236 represents the number of false negatives.
237 Results
238 The proposed MF-Net and SemiMF-Net are compared with state-of-the-art methods, including UNet 
239 (Ronneberger et al. (2015)), CE-Net (Gu et al. (2019)), CPFNet (Feng et al. (2020)), AttUNet (Oktay et al. 
240 (2018)), DeepLab v3 (Li et al. (2018)) and PSPNet (Chen et al. (2017)), as shown in Table 2. Compared 
241 to the Backbone, CE-Net achieves an increase of 0.21% for the main evaluation metric DSC, due to the 
242 combination of dense atrous convolution (DAC) and residual multi-kernel pooling (RMP). The performance 
243 of CPFNet is comparable with the proposed MF-Net as for the insertion of global pyramid guidance (GPG) 
244 module, which combines multi-stage global context information to reconstruct skip-connection and provide 
245 global information guidance flow for the decoder.

246 It is worth noting that both proposed MF-Net and SemiMF-Net achieves better performance than all 
247 of the above methods. As shown in Table 2 that the DSC, SEN, and JSC of MF-Net achieves 92.90%, 
248 93.01% and 86.80%, respectively. Compared to MF-Net, the average values of DSC, SEN, and JSC of 
249 the proposed SemiMF-Net have been improved to 93.07%, 93.26%, and 87.07%, respectively. These 
250 experimental results show that our proposed SemiMF-Net can leverage unlabeled data to further improve 
251 the segmentation performance.

252 It can be seen from Table 2 that our proposed method takes slightly longer time than backbone due to 
253 the introduction of MAD and SDA in MF-Net. However, it can still meet the requirement of real-time 
254 processing. These experimental results show that compared with other CNN-based methods, our proposed 
255 MF-Net and SemiMF-Net can achieve better segmentation performance with similar efficiency.

256 Furthermore, to demonstrate the effectiveness of the proposed method, the qualitative segmentation 
257 results are also given in Fig. 5. The proposed SemiMF-Net is more accurate and has better robustness in 
258 the CNV segmentation task.
259 Statistical Significance Assessment
260 We further investigate the statistical significance of the performance improvement for the proposed 
261 MF-Net and SemiMF-Net by the paired T test, and these p-values are listed in Table 3 and Table 4, 
262 respectively.
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Figure 5. Examples of CNV segmentation. From left to right are original image, CE-Net, CPFNet, 
DeepLab v3, PSPNet, Backbone, and our proposed method SemiMF-Net. Yellow represents the correctly 
segmented region, while red and blue are the results of false positive segmentation and false negative 
segmentation, respectively.

As shown in Table 3 that compared with other CNN-based methods, except for the significance compared263
with PSPNet and DeepLab v3 are not obvious, all the improvements for JSC and DSC of MF-Net are264
statistically significant with p-values less than 0.05. The results further prove the effectiveness of the265
proposed MF-Net. Table 4 lists the p-values of the proposed SemiMF-Net compared with MF-Net and266
other CNN-based methods. All the improvements for JSC and DSC of SemiMF-Net are statistically267
significant with p-values less than 0.05. The results further proves that the proposed SemiMF-Net can268
leverage unlabeled data to further improve the CNV performance significantly.269
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Table 3. Statistical analysis (p-value) of the proposed MF-Net compared with other CNN-based methods.
Method JSC DSC

MF-Net-UNet(Ronneberger et al. (2015)) 0.015 0.018
MF-Net-AttUNet(Oktay et al. (2018)) 0.001 0.001

MF-Net-CE-Net(Gu et al. (2019)) 0.001 <5E-4
MF-Net-PSPNet(Chen et al. (2017)) 0.069 0.069
MF-Net-CPFNet(Feng et al. (2020)) 0.004 0.003

MF-Net-DeepLab v3(Li et al. (2018)) 0.122 0.118
MF-Net-Backbone 0.002 0.002

Table 4. Statistical analysis (p-value) of the proposed SemiMF-Net compared with other CNN-based
methods.

Method JSC DSC
SemiMF-Net-UNet(Ronneberger et al. (2015)) 0.013 0.014

SemiMF-Net-AttUNet(Oktay et al. (2018)) <5E-4 <5E-4
SemiMF-Net-CE-Net(Gu et al. (2019)) 0.011 0.009

SemiMF-Net-PSPNet(Chen et al. (2017)) 0.042 0.040
SemiMF-Net-CPFNet(Feng et al. (2020)) 0.005 0.004

SemiMF-Net-DeepLab v3(Li et al. (2018)) 0.051 0.041
SemiMF-Net-Backbone 0.007 0.007
SemiMF-Net- MF-Net 0.046 0.038

Ablation Study270

To verify the validity of the proposed MAD module and SDA module, we also conduct ablation271
experiments. As shown in Table 2, the embedding of MAD module (Baseline + MAD) achieves substantial272
improvement over the Backbone in terms of all metric, which proves that multi-scale deformation features273
and adaptively aggregate contextual information are conducive for segmentation.274

Furthermore, numerical results show that, the embedding of SDA (Baseline + SDA) also contributes to the275
performance improvement, suggesting that well-designed skip connections can extract detailed information276
that is more conducive to segmentation, thereby improving the accuracy of segmentation. Especially, our277
proposed MAD module and SDA module can be easily introduced into other encoder-decoder network,278
which is our near future work. Furthermore, the proposed MF-Net achieves the highest DSC, and these279
results further demonstrate the effectiveness of our proposed method.280

CONCLUSION
CNV segmentation is a fundamental task in the medical image analysis. In this paper, we propose a novel281
encoder-decoder based multi-scale information fusion network named MF-Net. A multi-scale adaptive-282
aware deformation module (MAD) and a semantics-details aggregation module (SDA) are integrated to the283
encoder-decoder structure to fuse multi-scale contextual information and multi-level semantic information284
that is conducive to segmentation and further improve the segmentation performance. Furthermore, to solve285
the problem of insufficient pixel-level annotation data, based on the newly proposed MF-Net, SemiMF-Net286
is proposed by introducing semi-supervised learning to leverage unlabeled data to further improve the CNV287
segmentation accuracy. The comprehensive experimental results show that the segmentation performance288
of the proposed MF-Net and SemiMF-Net outperforms other state-of-the-art algorithms.289

There is still a limitation on this study that the proposed MF-Net is designed based on the encoder-decoder290
structure, and cannot effectively prove its generalization on different backbone networks. In future work, we291
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will extend the proposed MAD and SDA to various backbones to further prove its stability and versatility,292
and strive to reduce the number of parameters.293
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